Invariant Measures and Stiffness for Non Abelian Groups of Toral Automorphisms
نویسندگان
چکیده
Let Γ be a non-elementary subgroup of SL2(Z). If μ is a probability measure on T which is Γ-invariant, then μ is a convex combination of the Haar measure and an atomic probability measure supported by rational points. The same conclusion holds under the weaker assumption that μ is ν-stationary, i.e. μ = ν ∗ μ, where ν is a finitely supported probability measure on Γ whose support supp(ν) generates Γ. The approach works more generally for Γ < SLd(Z). Resume. Soit Γ un sous-groupe non-élementaire du groupe SL2(Z). Soit μ une measure de probabilité Γ-invariante sur le tore T. On démontre que μ est une moyenne de la mesure de Haar et une probabilité discrète portée par des points rationnels. La même conclusion reste vrai sous l’hypothèse que μ est ν-stationnaire, done μ = ν ∗ μ, où ν est une probabilité sur Γ à support fini et engendrant Γ. L’approche se généralise aux sous-groupes Γ de SLd(Z).
منابع مشابه
Symbolic Representations of Nonexpansive Group Automorphisms
If α is an irreducible nonexpansive ergodic automorphism of a compact abelian group X (such as an irreducible nonhyperbolic ergodic toral automorphism), then α has no finite or infinite state Markov partitions, and there are no nontrivial continuous embeddings of Markov shifts in X. In spite of this we are able to construct a symbolic space V and a class of shift-invariant probability measures ...
متن کاملSymbolic Covers of Toral Automorphisms
This note gives an account of the algebraic construction of symbolic covers and representations of ergodic automorphisms of compact abelian groups. For expansive toral automorphisms this subject was initiated by A.M. Vershik.
متن کاملQuotients of `∞(z,z) and Symbolic Covers of Toral Automorphisms
This note gives an account of the algebraic construction of symbolic covers and representations of ergodic automorphisms of compact abelian groups. For expansive toral automorphisms this subject was initiated by A.M. Vershik.
متن کاملOn equality of absolute central and class preserving automorphisms of finite $p$-groups
Let $G$ be a finite non-abelian $p$-group and $L(G)$ denotes the absolute center of $G$. Also, let $Aut^{L}(G)$ and $Aut_c(G)$ denote the group of all absolute central and the class preserving automorphisms of $G$, respectively. In this paper, we give a necessary and sufficient condition for $G$ such that $Aut_c(G)=Aut^{L}(G)$. We also characterize all finite non-abelian $p$-groups of order $p^...
متن کاملSome properties of marginal automorphisms of groups
AbstractLet W be a non-empty subset of a free group. The automorphism of a group G is said to be a marginal automorphism, if for all x in G,x^−1alpha(x) in W^*(G), where W^*(G) is the marginal subgroup of G.In this paper, we give necessary and sufficient condition for a purelynon-abelian p-group G, such that the set of all marginal automorphismsof G forms an elementary abelian p-group.
متن کامل